Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 27(1): 248-263, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28987005

RESUMO

Although sexual reproduction is ubiquitous throughout nature, the molecular machinery behind it has been repeatedly disrupted during evolution, leading to the emergence of asexual lineages in all eukaryotic phyla. Despite intensive research, little is known about what causes the switch from sexual reproduction to asexuality. Interspecific hybridization is one of the candidate explanations, but the reasons for the apparent association between hybridization and asexuality remain unclear. In this study, we combined cross-breeding experiments with population genetic and phylogenomic approaches to reveal the history of speciation and asexuality evolution in European spined loaches (Cobitis). Contemporary species readily hybridize in hybrid zones, but produce infertile males and fertile but clonally reproducing females that cannot mediate introgressions. However, our analysis of exome data indicates that intensive gene flow between species has occurred in the past. Crossings among species with various genetic distances showed that, while distantly related species produced asexual females and sterile males, closely related species produce sexually reproducing hybrids of both sexes. Our results suggest that hybridization leads to sexual hybrids at the initial stages of speciation, but as the species diverge further, the gradual accumulation of reproductive incompatibilities between species could distort their gametogenesis towards asexuality. Interestingly, comparative analysis of published data revealed that hybrid asexuality generally evolves at lower genetic divergences than hybrid sterility or inviability. Given that hybrid asexuality effectively restricts gene flow, it may establish a primary reproductive barrier earlier during diversification than other "classical" forms of postzygotic incompatibilities. Hybrid asexuality may thus indirectly contribute to the speciation process.


Assuntos
Cipriniformes/genética , Especiação Genética , Hibridização Genética , Reprodução Assexuada/genética , Zigoto/fisiologia , Animais , Cruzamentos Genéticos , Feminino , Variação Genética , Genética Populacional , Geografia , Haplótipos/genética , Masculino , Isolamento Reprodutivo , Especificidade da Espécie
2.
J Eukaryot Microbiol ; 64(3): 360-369, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27678215

RESUMO

Prasinophytes are a paraphyletic assemblage of nine heterogeneous lineages in the Chlorophyta clade of Archaeplastida. Until now, seven complete mitochondrial genomes have been sequenced from four prasinophyte lineages. Here, we report the mitochondrial genome of Pyramimonas parkeae, the first representative of the prasinophyte clade I. The circular-mapping molecule is 43,294 bp long, AT rich (68.8%), very compact and it comprises two 6,671 bp long inverted repeat regions. The gene content is slightly smaller than the gene-richest prasinophyte mitochondrial genomes. The single identified intron is located in the cytochrome c oxidase subunit 1 gene (cox1). Interestingly, two exons of cox1 are encoded on the same strand of DNA in the reverse order and the mature mRNA is formed by trans-splicing. The phylogenetic analysis using the data set of 6,037 positions assembled from 34 mtDNA-encoded proteins of 48 green algae and plants is not in compliance with the branching order of prasinophyte clades revealed on the basis of 18S rRNA genes and cpDNA-encoded proteins. However, the phylogenetic analyses based on all three genomic elements support the sister position of prasinophyte clades Pyramimonadales and Mamiellales.


Assuntos
Clorófitas/genética , Genoma Mitocondrial/genética , Proteínas Mitocondriais/classificação , Proteínas Mitocondriais/genética , Filogenia , Sequência de Bases , Clorófitas/enzimologia , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , DNA de Plantas , Complexo IV da Cadeia de Transporte de Elétrons/genética , Euglênidos/genética , Éxons/genética , Heterogeneidade Genética , Íntrons/genética , Anotação de Sequência Molecular , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Plantas/genética , RNA Mensageiro/genética , RNA Ribossômico 18S/genética , Trans-Splicing
3.
BMC Evol Biol ; 16(1): 197, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27716026

RESUMO

BACKGROUND: Multiple prokaryotic lineages use the arginine deiminase (ADI) pathway for anaerobic energy production by arginine degradation. The distribution of this pathway among eukaryotes has been thought to be very limited, with only two specialized groups living in low oxygen environments (Parabasalia and Diplomonadida) known to possess the complete set of all three enzymes. We have performed an extensive survey of available sequence data in order to map the distribution of these enzymes among eukaryotes and to reconstruct their phylogenies. RESULTS: We have found genes for the complete pathway in almost all examined representatives of Metamonada, the anaerobic protist group that includes parabasalids and diplomonads. Phylogenetic analyses indicate the presence of the complete pathway in the last common ancestor of metamonads and heterologous transformation experiments suggest its cytosolic localization in the metamonad ancestor. Outside Metamonada, the complete pathway occurs rarely, nevertheless, it was found in representatives of most major eukaryotic clades. CONCLUSIONS: Phylogenetic relationships of complete pathways are consistent with the presence of the Archaea-derived ADI pathway in the last common ancestor of all eukaryotes, although other evolutionary scenarios remain possible. The presence of the incomplete set of enzymes is relatively common among eukaryotes and it may be related to the fact that these enzymes are involved in other cellular processes, such as the ornithine-urea cycle. Single protein phylogenies suggest that the evolutionary history of all three enzymes has been shaped by frequent gene losses and horizontal transfers, which may sometimes be connected with their diverse roles in cellular metabolism.


Assuntos
Eucariotos/metabolismo , Evolução Molecular , Hidrolases/metabolismo , Redes e Vias Metabólicas , Archaea/metabolismo , Arginina/metabolismo , Diplomonadida/enzimologia , Eucariotos/classificação , Eucariotos/genética , Filogenia
4.
Curr Biol ; 26(10): 1274-84, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27185558

RESUMO

The presence of mitochondria and related organelles in every studied eukaryote supports the view that mitochondria are essential cellular components. Here, we report the genome sequence of a microbial eukaryote, the oxymonad Monocercomonoides sp., which revealed that this organism lacks all hallmark mitochondrial proteins. Crucially, the mitochondrial iron-sulfur cluster assembly pathway, thought to be conserved in virtually all eukaryotic cells, has been replaced by a cytosolic sulfur mobilization system (SUF) acquired by lateral gene transfer from bacteria. In the context of eukaryotic phylogeny, our data suggest that Monocercomonoides is not primitively amitochondrial but has lost the mitochondrion secondarily. This is the first example of a eukaryote lacking any form of a mitochondrion, demonstrating that this organelle is not absolutely essential for the viability of a eukaryotic cell.


Assuntos
Mitocôndrias/fisiologia , Oximonadídeos/citologia , Oximonadídeos/fisiologia , Enxofre/metabolismo , Evolução Biológica , Citosol/metabolismo , Oximonadídeos/genética , Filogenia , Transcriptoma
5.
Genome Biol Evol ; 8(3): 705-22, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26872774

RESUMO

Eustigmatophyceae (Ochrophyta, Stramenopiles) is a small algal group with species of the genus Nannochloropsis being its best studied representatives. Nuclear and organellar genomes have been recently sequenced for several Nannochloropsis spp., but phylogenetically wider genomic studies are missing for eustigmatophytes. We sequenced mitochondrial genomes (mitogenomes) of three species representing most major eustigmatophyte lineages, Monodopsis sp. MarTras21, Vischeria sp. CAUP Q 202 and Trachydiscus minutus, and carried out their comparative analysis in the context of available data from Nannochloropsis and other stramenopiles, revealing a number of noticeable findings. First, mitogenomes of most eustigmatophytes are highly collinear and similar in the gene content, but extensive rearrangements and loss of three otherwise ubiquitous genes happened in the Vischeria lineage; this correlates with an accelerated evolution of mitochondrial gene sequences in this lineage. Second, eustigmatophytes appear to be the only ochrophyte group with the Atp1 protein encoded by the mitogenome. Third, eustigmatophyte mitogenomes uniquely share a truncated nad11 gene encoding only the C-terminal part of the Nad11 protein, while the N-terminal part is encoded by a separate gene in the nuclear genome. Fourth, UGA as a termination codon and the cognate release factor mRF2 were lost from mitochondria independently by the Nannochloropsis and T. minutus lineages. Finally, the rps3 gene in the mitogenome of Vischeria sp. is interrupted by the UAG codon, but the genome includes a gene for an unusual tRNA with an extended anticodon loop that we speculate may serve as a suppressor tRNA to properly decode the rps3 gene.


Assuntos
Evolução Molecular , Filogenia , Estramenópilas/genética , Genoma Mitocondrial , Genômica
6.
Fungal Biol ; 120(3): 358-69, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26895864

RESUMO

Mechanisms evolved in eukaryotes to handle heavy metals involve cytosolic, metal-binding metallothioneins (MTs). We have previously documented that the sequestration of silver (Ag) in the Ag-hyperaccumulating Amanita strobiliformis is dominated by 34-amino-acid (AA) AsMT1a, 1b, and 1c isoforms. Here we show that in addition to AsMT1a, 1b, and 1c isogenes, the fungus has two other MT genes: AsMT2 encoding a 34-AA AsMT2 similar to MTs known from other species, but unrelated to AsMT1s; AsMT3 coding for a 62-AA AsMT3 that shares substantial identity with as-yet-uncharacterized conserved peptides predicted in agaricomycetes. Transcription of AsMT1s and AsMT3 in the A. strobiliformis mycelium was specifically inducible by treatments with Ag or copper (Cu) and zinc (Zn) or cadmium (Cd), respectively; AsMT2 showed a moderate upregulation in the presence of Cd. Expression of AsMTs in the metal-sensitive Saccharomyces cerevisiae revealed that all AsMTs confer increased Cd tolerance (AsMT3 proved the most effective) and that, unlike AsMT1 and AsMT2, AsMT3 can protect the yeasts against Zn toxicity. The highest level of Cu tolerance was observed with yeasts expressing AsMT1a. Our data indicate that A. strobiliformis can specifically employ different MT genes for functions in the cellular handling of Ag and Cu (AsMT1s) and Zn (AsMT3).


Assuntos
Amanita/genética , Amanita/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Prata/metabolismo , Cobre/metabolismo , Tolerância a Medicamentos , Perfilação da Expressão Gênica , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/efeitos dos fármacos , Zinco/metabolismo
7.
Mol Phylogenet Evol ; 98: 41-51, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26826602

RESUMO

Archamoebae is an understudied group of anaerobic free-living or endobiotic protists that constitutes the major anaerobic lineage of the supergroup Amoebozoa. Hitherto, the phylogeny of Archamoebae was based solely on SSU rRNA and actin genes, which did not resolve relationships among the main lineages of the group. Because of this uncertainty, several different scenarios had been proposed for the phylogeny of the Archamoebae. In this study, we present the first multigene phylogenetic analysis that includes members of Pelomyxidae, and Rhizomastixidae. The analysis clearly shows that Mastigamoebidae, Pelomyxidae and Rhizomastixidae form a clade of mostly free-living, amoeboid flagellates, here called Pelobiontida. The predominantly endobiotic and aflagellated Entamoebidae represents a separate, deep-branching lineage, Entamoebida. Therefore, two unique evolutionary events, horizontal transfer of the nitrogen fixation system from bacteria and transfer of the sulfate activation pathway to mitochondrial derivatives, predate the radiation of recent lineages of Archamoebae. The endobiotic lifestyle has arisen at least three times independently during the evolution of the group. We also present new ultrastructural data that clarifies the primary divergence among the family Mastigamoebidae which had previously been inferred from phylogenetic analyses based on SSU rDNA.


Assuntos
Archamoebae/classificação , Archamoebae/genética , Família Multigênica/genética , Filogenia , Archamoebae/metabolismo , Archamoebae/ultraestrutura , Evolução Molecular , Transferência Genética Horizontal/genética , Mitocôndrias/metabolismo , Fixação de Nitrogênio/genética , Sulfatos/metabolismo
8.
Front Microbiol ; 6: 1268, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635740

RESUMO

Given that the degradation of aromatic pollutants in anaerobic environments such as sediment is generally very slow, aeration could be an efficient bioremediation option. Using stable isotope probing (SIP) coupled with pyrosequencing analysis of 16S rRNA genes, we identified naphthalene-utilizing populations in aerated polyaromatic hydrocarbon (PAH)-polluted sediment. The results showed that naphthalene was metabolized at both 10 and 20°C following oxygen delivery, with increased degradation at 20°C as compared to 10°C-a temperature more similar to that found in situ. Naphthalene-derived (13)C was primarily assimilated by pseudomonads. Additionally, Stenotrophomonas, Acidovorax, Comamonas, and other minor taxa were determined to incorporate (13)C throughout the measured time course. The majority of SIP-detected bacteria were also isolated in pure cultures, which facilitated more reliable identification of naphthalene-utilizing populations as well as proper differentiation between primary consumers and cross-feeders. The pseudomonads acquiring the majority of carbon were identified as Pseudomonas veronii and Pseudomonas gessardii. Stenotrophomonads and Acidovorax defluvii, however, were identified as cross-feeders unable to directly utilize naphthalene as a growth substrate. PAH degradation assays with the isolated bacteria revealed that all pseudomonads as well as Comamonas testosteroni degraded acenaphthene, fluorene, and phenanthrene in addition to naphthalene. Furthermore, P. veronii and C. testosteroni were capable of transforming anthracene, fluoranthene, and pyrene. Screening of isolates for naphthalene dioxygenase genes using a set of in-house designed primers for Gram-negative bacteria revealed the presence of such genes in pseudomonads and C. testosteroni. Overall, our results indicated an apparent dominance of pseudomonads in the sequestration of carbon from naphthalene and potential degradation of other PAHs upon aeration of the sediment at both 20 and 10°C.

9.
Front Microbiol ; 6: 1288, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635756

RESUMO

We used culture-based and culture-independent approaches to discover diversity and ecology of anaerobic jakobids (Excavata: Jakobida), an overlooked, deep-branching lineage of free-living nanoflagellates related to Euglenozoa. Jakobids are among a few lineages of nanoflagellates frequently detected in anoxic habitats by PCR-based studies, however only two strains of a single jakobid species have been isolated from those habitats. We recovered 712 environmental sequences and cultured 21 new isolates of anaerobic jakobids that collectively represent at least ten different species in total, from which four are uncultured. Two cultured species have never been detected by environmental, PCR-based methods. Surprisingly, culture-based and culture-independent approaches were able to reveal a relatively high proportion of overall species diversity of anaerobic jakobids-60 or 80%, respectively. Our phylogenetic analyses based on SSU rDNA and six protein-coding genes showed that anaerobic jakobids constitute a clade of morphologically similar, but genetically and ecologically diverse protists-Stygiellidae fam. nov. Our investigation combines culture-based and environmental molecular-based approaches to capture a wider extent of species diversity and shows Stygiellidae as a group that ordinarily inhabits anoxic, sulfide- and ammonium-rich marine habitats worldwide.

10.
Biomed Res Int ; 2014: 408683, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24864240

RESUMO

With the increasing demand for noninvasive approaches in monitoring head and neck cancer, circulating nucleic acids have been shown to be a promising tool. We focused on the global transcriptome of serum samples of head and neck squamous cell carcinoma (HNSCC) patients in comparison with healthy individuals. We compared gene expression patterns of 36 samples. Twenty-four participants including 16 HNSCC patients (from 12 patients we obtained blood samples 1 year posttreatment) and 8 control subjects were recruited. The Illumina HumanWG-6 v3 Expression BeadChip was used to profile and identify the differences in serum mRNA transcriptomes. We found 159 genes to be significantly changed (Storey's P value <0.05) between normal and cancer serum specimens regardless of factors including p53 and B-cell lymphoma family members (Bcl-2, Bcl-XL). In contrast, there was no difference in gene expression between samples obtained before and after surgery in cancer patients. We suggest that microarray analysis of serum cRNA in patients with HNSCC should be suitable for refinement of early stage diagnosis of disease that can be important for development of new personalized strategies in diagnosis and treatment of tumours but is not suitable for monitoring further development of disease.


Assuntos
Carcinoma de Células Escamosas/sangue , Carcinoma de Células Escamosas/genética , Genoma Humano/genética , Neoplasias de Cabeça e Pescoço/sangue , Neoplasias de Cabeça e Pescoço/genética , Análise em Microsséries , RNA Mensageiro/sangue , Adulto , Idoso , Apoptose/genética , Carcinoma de Células Escamosas/patologia , Estudos de Casos e Controles , Demografia , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Componente Principal , RNA Mensageiro/genética , Transdução de Sinais/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço , Proteína Supressora de Tumor p53/metabolismo
11.
Appl Microbiol Biotechnol ; 97(20): 9245-56, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23250224

RESUMO

The aim of the study was to investigate how selected natural compounds (naringin, caffeic acid, and limonene) induce shifts in both bacterial community structure and degradative activity in long-term polychlorinated biphenyl (PCB)-contaminated soil and how these changes correlate with changes in chlorobiphenyl degradation capacity. In order to address this issue, we have integrated analytical methods of determining PCB degradation with pyrosequencing of 16S rRNA gene tag-encoded amplicons and DNA-stable isotope probing (SIP). Our model system was set in laboratory microcosms with PCB-contaminated soil, which was enriched for 8 weeks with the suspensions of flavonoid naringin, terpene limonene, and phenolic caffeic acid. Our results show that application of selected plant secondary metabolites resulted in bacterial community structure far different from the control one (no natural compound amendment). The community in soil treated with caffeic acid is almost solely represented by Proteobacteria, Acidobacteria, and Verrucomicrobia (together over 99 %). Treatment with naringin resulted in an enrichment of Firmicutes to the exclusion of Acidobacteria and Verrucomicrobia. SIP was applied in order to identify populations actively participating in 4-chlorobiphenyl catabolism. We observed that naringin and limonene in soil foster mainly populations of Hydrogenophaga spp., caffeic acid Burkholderia spp. and Pseudoxanthomonas spp. None of these populations were detected among 4-chlorobiphenyl utilizers in non-amended soil. Similarly, the degradation of individual PCB congeners was influenced by the addition of different plant compounds. Residual content of PCBs was lowest after treating the soil with naringin. Addition of caffeic acid resulted in comparable decrease of total PCBs with non-amended soil; however, higher substituted congeners were more degraded after caffeic acid treatment compared to all other treatments. Finally, it appears that plant secondary metabolites have a strong effect on the bacterial community structure, activity, and associated degradative ability.


Assuntos
Bactérias/metabolismo , Plantas/metabolismo , Plantas/microbiologia , Poluentes do Solo/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodegradação Ambiental , Bifenilos Policlorados/metabolismo , Metabolismo Secundário , Solo/química , Microbiologia do Solo
12.
PLoS One ; 7(7): e40653, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22808223

RESUMO

Bacteria were identified associated with biodegradation of aromatic pollutants biphenyl, benzoate, and naphthalene in a long-term polychlorinated biphenyl- and polyaromatic hydrocarbon-contaminated soil. In order to avoid biases of culture-based approaches, stable isotope probing was applied in combination with sequence analysis of 16 S rRNA gene pyrotags amplified from (13)C-enriched DNA fractions. Special attention was paid to pyrosequencing data analysis in order to eliminate the errors caused by either generation of amplicons (random errors caused by DNA polymerase, formation of chimeric sequences) or sequencing itself. Therefore, sample DNA was amplified, sequenced, and analyzed along with the DNA of a mock community constructed out of 8 bacterial strains. This warranted that appropriate tools and parameters were chosen for sequence data processing. (13)C-labeled metagenomes isolated after the incubation of soil samples with all three studied aromatics were largely dominated by Proteobacteria, namely sequences clustering with the genera Rhodanobacter Burkholderia, Pandoraea, Dyella as well as some Rudaea- and Skermanella-related ones. Pseudomonads were mostly labeled by (13)C from naphthalene and benzoate. The results of this study show that many biphenyl/benzoate-assimilating bacteria derive carbon also from naphthalene, pointing out broader biodegradation abilities of some soil microbiota. The results also demonstrate that, in addition to traditionally isolated genera of degradative bacteria, yet-to-be cultured bacteria are important players in bioremediation. Overall, the study contributes to our understanding of biodegradation processes in contaminated soil. At the same time our results show the importance of sequencing and analyzing a mock community in order to more correctly process and analyze sequence data.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Benzoatos/metabolismo , Compostos de Bifenilo/metabolismo , Naftalenos/metabolismo , Microbiologia do Solo , Poluentes do Solo/análise , Bactérias/genética , Sequência de Bases , Biodegradação Ambiental , Isótopos de Carbono , DNA Bacteriano/metabolismo , Marcação por Isótopo , Filogenia , Análise de Sequência de DNA
13.
PLoS One ; 7(4): e36420, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22558464

RESUMO

Formation of all metazoan bodies is controlled by a group of selector genes including homeobox genes, highly conserved across the entire animal kingdom. The homeobox genes from Pou and Six classes are key members of the regulation cascades determining development of sensory organs, nervous system, gonads and muscles. Besides using common bilaterian models, more attention has recently been targeted at the identification and characterization of these genes within the basal metazoan phyla. Cnidaria as a diploblastic sister group to bilateria with simple and yet specialized organs are suitable models for studies on the sensory organ origin and the associated role of homeobox genes. In this work, Pou and Six homeobox genes, together with a broad range of other sensory-specific transcription factors, were identified in the transcriptome of hydrozoan jellyfish Craspedacusta sowerbyi. Phylogenetic analyses of Pou and Six proteins revealed cnidarian-specific sequence motifs and contributed to the classification of individual factors. The majority of the Craspedacusta sowerbyi Pou and Six homeobox genes are predominantly expressed in statocysts, manubrium and nerve ring, the tissues with sensory and nervous activities. The described diversity and expression patterns of Pou and Six factors in hydrozoan jellyfish highlight their evolutionarily conserved functions. This study extends the knowledge of the cnidarian genome complexity and shows that the transcriptome of hydrozoan jellyfish is generally rich in homeodomain transcription factors employed in the regulation of sensory and nervous functions.


Assuntos
Variação Genética , Hidrozoários/genética , Fatores do Domínio POU/genética , Filogenia , Transcriptoma , Animais , Evolução Molecular , Feminino , Especificidade de Órgãos , Fatores do Domínio POU/química , Fatores do Domínio POU/metabolismo , Estrutura Terciária de Proteína
14.
Int J Cancer ; 131(11): 2499-508, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22447203

RESUMO

Tumor stroma is an active part influencing the biological properties of malignancies via molecular cross-talk. Cancer-associated fibroblasts play a significant role in this interaction. These cells frequently express smooth muscle actin and can be classified as myofibroblasts. The adhesion/growth-regulatory lectin galectin-1 is an effector for their generation. In our study, we set the presence of smooth muscle actin-positive cancer-associated fibroblasts in relation to this endogenous lectin and an in vivo competitor (galectin-3). In squamous cell carcinomas of head and neck, upregulation of galectin-1 presence was highly significantly correlated to presence of smooth muscle actin-positive cancer-associated fibroblasts in the tumor (p = 4 × 10(-8)). To pinpoint further correlations on the molecular level, we applied microarray analyses to the transcription profiles of the corresponding tumors. Significant correlations of several transcripts were detected with the protein level of galectin-1 in the cancer-associated fibroblasts. These activated genes (MAP3K2, TRIM23, PTPLAD1, FUSIP1, SLC25A40 and SPIN1) are related to known squamous-cell-carcinoma poor-prognosis factors, NF-κB upregulation and splicing downregulation. These results provide new insights into the significance of presence of myofibroblasts in squamous cell carcinoma.


Assuntos
Actinas/biossíntese , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Galectina 1/biossíntese , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Actinas/genética , Actinas/metabolismo , Carcinoma de Células Escamosas/genética , Regulação para Baixo , Feminino , Galectina 1/genética , Galectina 1/metabolismo , Galectina 3/genética , Galectina 3/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Humanos , Masculino , Músculo Liso/metabolismo , Músculo Liso/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , NF-kappa B/genética , NF-kappa B/metabolismo , Prognóstico , Splicing de RNA , Células Estromais/metabolismo , Células Estromais/patologia , Transcrição Gênica , Regulação para Cima
15.
Appl Environ Microbiol ; 77(19): 6858-66, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21821747

RESUMO

Bacteria that are able to utilize biphenyl as a sole source of carbon were extracted and isolated from polychlorinated biphenyl (PCB)-contaminated soil vegetated by horseradish. Isolates were identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). The usage of MALDI Biotyper for the classification of isolates was evaluated and compared to 16S rRNA gene sequence analysis. A wide spectrum of bacteria was isolated, with Arthrobacter, Serratia, Rhodococcus, and Rhizobium being predominant. Arthrobacter isolates also represented the most diverse group. The use of MALDI Biotyper in many cases permitted the identification at the level of species, which was not achieved by 16S rRNA gene sequence analyses. However, some isolates had to be identified by 16S rRNA gene analyses if MALDI Biotyper-based identification was at the level of probable or not reliable identification, usually due to a lack of reference spectra included in the database. Overall, this study shows the possibility of using MALDI-TOF MS and MALDI Biotyper for the fast and relatively nonlaborious identification/classification of soil isolates. At the same time, it demonstrates the dominant role of employing 16S rRNA gene analyses for the identification of recently isolated strains that can later fill the gaps in the protein-based identification databases.


Assuntos
Bactérias/química , Bactérias/classificação , Técnicas de Tipagem Bacteriana/métodos , Compostos de Bifenilo/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Armoracia , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Rizosfera , Análise de Sequência de DNA
16.
Appl Environ Microbiol ; 75(20): 6471-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19700551

RESUMO

DNA-based stable isotope probing in combination with terminal restriction fragment length polymorphism was used in order to identify members of the microbial community that metabolize biphenyl in the rhizosphere of horseradish (Armoracia rusticana) cultivated in soil contaminated with polychlorinated biphenyls (PCBs) compared to members of the microbial community in initial, uncultivated bulk soil. On the basis of early and recurrent detection of their 16S rRNA genes in clone libraries constructed from [(13)C]DNA, Hydrogenophaga spp. appeared to dominate biphenyl catabolism in the horseradish rhizosphere soil, whereas Paenibacillus spp. were the predominant biphenyl-utilizing bacteria in the initial bulk soil. Other bacteria found to derive carbon from biphenyl in this nutrient-amended microcosm-based study belonged mostly to the class Betaproteobacteria and were identified as Achromobacter spp., Variovorax spp., Methylovorus spp., or Methylophilus spp. Some bacteria that were unclassified at the genus level were also detected, and these bacteria may be members of undescribed genera. The deduced amino acid sequences of the biphenyl dioxygenase alpha subunits (BphA) from bacteria that incorporated [(13)C]into DNA in 3-day incubations of the soils with [(13)C]biphenyl are almost identical to that of Pseudomonas alcaligenes B-357. This suggests that the spectrum of the PCB congeners that can be degraded by these enzymes may be similar to that of strain B-357. These results demonstrate that altering the soil environment can result in the participation of different bacteria in the metabolism of biphenyl.


Assuntos
Armoracia/microbiologia , Bactérias/metabolismo , Compostos de Bifenilo/metabolismo , Bifenilos Policlorados/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Sequência de Bases , Betaproteobacteria/classificação , Betaproteobacteria/genética , Betaproteobacteria/isolamento & purificação , Betaproteobacteria/metabolismo , Isótopos de Carbono , Primers do DNA/genética , DNA Bacteriano/genética , Genes Bacterianos , Dados de Sequência Molecular , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...